Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension.

نویسندگان

  • Keisuke Shinohara
  • Xuebo Liu
  • Donald A Morgan
  • Deborah R Davis
  • Maria Luisa S Sequeira-Lopez
  • Martin D Cassell
  • Justin L Grobe
  • Kamal Rahmouni
  • Curt D Sigmund
چکیده

The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain-selective overexpression of human Angiotensin-converting enzyme type 2 attenuates neurogenic hypertension.

RATIONALE Angiotensin converting enzyme type 2 (ACE2) is a new member of the brain renin-angiotensin system, that might be activated by an overactive renin-angiotensin system. OBJECTIVE To clarify the role of central ACE2 using a new transgenic mouse model with human (h)ACE2 under the control of a synapsin promoter, allowing neuron-targeted expression in the central nervous system. METHODS ...

متن کامل

Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension.

RATIONALE Overactivity of the brain renin-angiotensin system is a major contributor to neurogenic hypertension. Although overexpression of angiotensin-converting enzyme type 2 (ACE2) has been shown to be beneficial in reducing hypertension by transforming angiotensin II into angiotensin-(1-7), several groups have reported decreased brain ACE2 expression and activity during the development of hy...

متن کامل

Editorial Focus: the brain renin-angiotensin system and hypertension. Focus on: hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent.

The brain renin-angiotensin system (RAS) has been extensively studied due to its role in central cardiovascular regulation and body fluid homeostasis. Much of the early work on this system was stimulated by the pioneering work of Brody, Johnson, and colleagues (1) who focused on possible interactions between circulating angiotensin II and a brain RAS promoting neurogenic hypertension. Our curre...

متن کامل

Direct Pro-Inflammatory Effects of Prorenin on Microglia

Neuroinflammation has been implicated in hypertension, and microglia have been proposed to play an important role in the progression of this disease. Here, we have studied whether microglia are activated within cardiovascular regulatory area(s) of the brain during hypertension, especially in high blood pressure that is associated with chronic activation of the renin-angiotensin-system. In addit...

متن کامل

Crocin prevents acute angiotensin II-induced hypertension in anesthetized rats

Objective: Angiotensin II (Ang II), the main product of renin-angiotensin system (RAS) has a well-known role in cardiovascular regulation. Over-production of Ang II is one of the important underlying mechanisms of hypertension. In this study, the effect of crocin on cardiovascular responses in rats with acute hypertension induced by Ang II was evaluated. Materials and methods: Rats were divided...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 68 6  شماره 

صفحات  -

تاریخ انتشار 2016